
 

Proposed Deterministic CNOT Gates Based on

Coherent Photon Conversion

A Thesis

Submitted to the Institute of Laser for Postgraduate Studies, in

partial fulfillment of the requirements for the degree of Doctor of

Philosophy in Laser/ Electronics & Communication Engineering

By

Jawad A.K. Hasan
.

2012

Supervisor: Prof. Dr. Khalil Hajim



Certification

I certify that this thesis was prepared under my supervision at

the Institute of Laser for Postgraduate Studies, University of

Baghdad as a partial requirements for the degree of Doctor of

Philosophy in Laser/ Electronics & Communication Engineering.

Signature

Name: Dr. Khalil Ibrahim Hajim

Title: Professor

Address: Institute of Laser for Postgraduate Studies,

University of Baghdad

Date: / /2012

In view of the available recommendations, I forward this the-

sis for debate by the examination committee.

Signature

Name: Dr Abdul Hadi M. Al-Janabi

Title: Professor/ Head of the Scientific Commitee

Address: Institute of Laser for Postgraduate Studies,

University of Baghdad

Date: / /2012

I



.

II



III



Aknoledgments

First and foremost, I would like to thank my supervisor Prof. Khalil Hajim

for his patience , continuous and constant encouragement. I would also like

to thank the Dean of the Institute of Laser for Postgraduate Studies Dr

Hussian Jawad for his consistent encouragement and efforts. My thanks

to the Ministry of Higher Education and Scientific Research for the study

grant. I would also like to thank my co-supervisors Dr Remo V. Hügli
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Abstract

Photonic CNOT gates are considered as one of the main building blocks of

a quantum computer. They are excellent sources for entangling photonic

qubits but current schemes for implementing CNOT operations are not

efficient to fulfill the requirement for a scalable photonic quantum compu-

tation. In this thesis two mathematical CNOT operators have been devised

for the first time and verified by carefully selecting the logical bases, then

photonic circuits for implementing deterministic CNOT operations have

been investigated. They are based on the quantum optics mechanism of

coherent photon conversion (CPC) which was recently only used for the

construction of controlled Z (CZ) gates. The first design architecture con-

sists of two identical CPC components that operate on general three single

mode states distributed among an ancilla, a control and a target. This

scheme has less complexity and can be realized in the computational Fock

bases (|0〉 and |1〉) with two sections of CPC and some linear optical el-

ements. The second design architecture is a dual rail scheme with three

CPC components . It has less complexity also and can be realized in the

polarization basis (H,V ) with three sections of CPC and some linear opti-

cal elements.

Since the pump field is a photonic coherent state, therefore, it can be used

as a switching parameter for the gate function to minimize the processing

time with respect to the decoherence time.
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1.1 Introduction

Historically, it can be said that the computing has been started when

human began counting numbers with his fingers, pebblels and clay until he

invented the methods of writting. Representing numbers by symbols had

a real impact on computing development and motivated the inventions of

different tools to perform arithmatic operations. Abacus was one example

of the tool used as a hand calculator. It was invented in Babylon about

2400 BC. The first style of abacus was made of lines drawn in sand with

spheres of pebbles. The more modern abaci designs, are still used today as

tools of calculation for primary schools . This was considered as the first

known computer and most advanced ancient calculating system known to

date which preceded Greek methods by 2000 years [1].

In the Islamic world, mechanical analog computer devices appeared again

and were developed by Muslim astronomers, such as the equatorial as-

trolabe by Abu Rayhan Al- Biruni. Muslim engineers have also invented

programmable machines , such as the automatic flute player by the Banu

Mosa brothers [1].

Algorithm was the analytical concept of computation, which is a proce-

dure for constructing a solution to a certain problem. The word algorithm

was first used in the 9th century after the mathematician, Abu Abdul-

lah Muhammad bin Musa Al-Khwarizmi, who published several scientific

books. His famous book, Al Jabr wa al Muqabilah contains procedures for

solving specific kinds of linear and quadratic equations which were studied

in Europe for more than 500 years. The word, algebra, was named after

its title . The increasing requirement to perform complicated calculations

in the the second millennium resulted in the developments of mechanical

devices. Infact the natural development in different calculating tools aimed
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to intiate a set of calculations which were used to solve the arithmetical

problems [1].

In 1831 Babbage designed an analytical engine which was the first ap-

proach for a general purpose programmable computer. This design used

steam to feed a control system of mechanical gear box that processed pro-

grams which was encoded onto punched cards. The output would be taken

as a text from a printer or graphics from a plotting device [1, 2].

Many computational models have been formalized in the first half of the

20th century until Turing showed in his famous that the computational

models, including the Universal Turing Machine (UTM), were compatible.

This model of computation is still considered as the most practical model

of computation [3] .

Algorithms were classfied according to their required amount of computa-

tional resources required. Time is an important resource for a computer.

The other important resource is space, which denotes to the amount of

memory used by the computer in performing the computation. The mea-

sure used for the amount of a resource in a computation for solving a given

problem is a function of the length of the input (number of bits) of an

instance of that problem. ”For example, if the problem is to multiply two

n bit numbers, a computer might solve this problem using up to 2n2 + 3

units of time (where the unit of time may be seconds, or the length of time

required for the computer to perform a basic step) [4].

From 1960 and on, computational complexity formalization began ,re-

sulting in a new field of computer science depending on the steps used in

solving the computational problems [8 -11].

An algorithm is cosidered to be efficient if its running time function do not

grow faster than some polynomial in the input size n, and inefficient if it
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grows faster than any polynomial. Accordingly a computational problem

is classified as easy or hard if there exists an efficient algorithm to solve it,

and hard if no such algorithm exists. In application, a wide range of alge-

braic, engineering and other problems are turned to be easy by simulating

an efficient algorithm for solving them. For problems that appear to be

intrinsically hard, the only way we can solve large instances of hard prob-

lems is to build massively powerful computers, and to design a powerful

and a fast computation algorithm [4].

Digital computers are considered as the first and only practical, general

purpose reliable and scalable computing device . Its invention harnessed

the computing power to be more significant that it was considered as the

transition point in history between the Industrial Age and the Computing

Age. The development in information theory, coding theory, and computer

engineering motivated digital computing to be more reliable [1].

Digital Circuit Model suggested by Shannon in 1937 , showed that the

Boolean algebra system can be implemented using readily available elec-

tronic switches [9]. Nine years later, von Neumann built the so called von

Neumann Architecture which provided a basic framework for the of scal-

able and general purpose digital computers design using digital circuits

[1]. The invention of error correcting digital circuits which resulted ap-

proximtely in 1950 was considered as the breakthrough in coding theory.

These techniques helped to build highly reliable computing devices from

less reliable parts [13-15].

The main revolution in in computer engineering was the invention of the

microprocessor which was began after the invention of the transistor. Tran-

sistors were immediately becoming the main elements in building digital

computers since it could be used to affect the size, reliability, and the cost

of the digital circuit. At first transistor did facilitate several early digital
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computers, but the most effective thing was the microprocessor by fabri-

cating of thousands of trasistors on a small chip area which was the real

impact on digital computer [1].
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Figure 1: Moore’s Law[13]

In1965 Moore observed that the number of transistor in the typical mi-

croprocessor was doubling approximately every 18-24 months as shown in

Fig.1[13]. His prediction was then known as Moores Law which showed

that the size of transistors as a function time will be decreased. If this rate

continued at the given rate, physical systems which encode classical bits

of information will be in of the size of atoms in approximately the next 10

years at which, the quantum effects will be dominant. To confined all these

developments and explosion of computing power, hardware and software

devices were required. Moores law, refers to the time when transistors sizes

will be decreased to the atomic scale at which the computing devices will

enter the domain of quantum mechanics [16-18].
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1.2 Classical Logic

The classical computation theory began when Church and Turing have

successfully and independently developed a classical discrete computation

model given by [3, 17];

x1, x2..., xn f(x1, x2..., xn)−−−−−−−−−−−−−→
b (1)

where b = f(x1, x2..., xn) is single-valued function on n discrete inputs

and this function has been assumed to be simulated and computed by

physical model. This function was known as n-bits algebraic function where

the input variables (x1, x2..., xn), and b are binary variables, or bits, of

values, 0 or 1. In this case, the function f(a1, a2..., an) is known as an n-

bit Boolean function. The main problem concerned any efficient computer

is the universality, which means that any function whatever large can be

simulated on its inputs by a universal set of operations called gates which

repeatedly used in acertain fashin according to the type of the function f .

Classical computation can be done with logical gates, AND, OR, and NOT

gate, which are considered as universal gate for classical computation, since

it is possible to simulate any function of the form illustrated in Eq.(1) by

combinations of their operations. Classical logic gate funtions were allway

given by Truth tables as in table (1) [15, 16]. Any Boolean functions can

be simulated with a set of AND, OR, and NOT gates. So these three gates

are universal for classical Boolean logic. To simplify manufacturing and

fabrication of logic circuits the three aforementioned gates were simulated

by repeatedly operations of specific gate called NAND gate as given by

[15, 16]:

a NAND b = NOT (a AND b) (2)
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Table 1: The logical relation of classical logic gates AND, OR, &NOT.

AND OR NOT
a1 a2 b a1 a2 b a b
0 0 0 0 0 0 0 1
0 1 0 0 1 1 1 0
1 0 0 1 0 1
1 1 1 1 1 1

The three mentioned universal gates can be simulated by NAND operations

such that

a OR b = (a NAND a) NAND (b NAND b)

a AND b = (a NAND b) NAND (a NAND b)

NOT a = a NAND a

(3)

Therefore it is important here to refer that the two-bit NAND gate alone is

sufficient for classical Boolean logic. The number of NAND gates required

to simulate a function with n inputs is exponentialy proportional to n

since NAND gate is a two bit input and only one bit output function.

where one of its inputs has effectively been lost in the process, whose

information has been irretrievably lost which makes an entropy change

of ln2 for every bit lost and this amounts to an energy increase of kT

ln2 , where k is Boltzmans constant and T is the temperature in Kelvin

[18, 19]. This loss will cause heat dissipation which is taken to be an

indication of physical irreversibility [19]. To overcome this problem Bennett

in 1973 proposed reversible physical operation which then used in designing

reversible classical computation model that can be done with no energy

dissipation [20] .

It was shown that reversible model can be effeciently used to simulate any

problem that can be simulated on the original irreversible machine.Therefore

the computing machine implemented by physical reversible model implied
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that the logical operation done by this model are also reversible. This

debate intiated anew field of research aimed to build physical models for

reversible classical computation [20]. In 1981 Toffoli has been succeded to

identify three bit universal gate called the Toffoli Controlled-Controlled-

NOT ( CC-NOT). He showed that this three-bit gates are universal for

classical reversible computing. The Toffoli CCNOT gate is given by Eq.4

in the matrix representation of the three bit orientation (000, 001, 010,

011, 100, 101, 110, 111). The most significant consequence of this gate is

that Toffoli gate and other three bit classical reversible gates are universal

for reversible computing contrary to the two bits reversible gates [21].

CCNOT =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0



(4)

1.3 Quantum logic development

For the years between 1973-1980, all efforts have been directed to make

classical computing done in reversible fashion to decrease the energy dis-

sipation. The first ideas about using quantum models for computation

started by Fynman [22, 23]. At first, most researches in the field of quan-

tum computing were mainly done for academic purposes to explore the

capabilities of quantum computing. It was Peter Shor who gave the moti-

vation of the quantum computing , when he announced his quantum algo-
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rithm for factoring large numbers in 1994 with an efficiency unparalled by

any classical algorithm preceding it [24]. This paper was considered as the

real pay off for the quantum computation, where factoring problems were

widely used in public key cryptography to encrypt messages, which added

to the quantum computing an urgent tasks. The most effective advancing

in quantum computing has come in 1985 by Deutsh when he showed that

there exists a quantum analog to the Turing machine which was considered

as a landmark paper on this subject. Deutch assigned two important issues

to build a computer model, the storage unit and processing gates which

concerns to type of the memory units of quantum computer, and how to

process the information contained in them to do the computation [15, 25].

1.4 Quantum mechanical notes

Classical or Newtonian mechanics is used to describe classical physics, while

quantum mechanics is the mathematical formulation of quantum physics

[4]. Therefore, it is useful to present here a short note about relevant

quantum mechanical concepts of relevance to the operations of quantum

computing.

State space is always used in quantum mechanics to describe all the known

properties of that state. It differs from that of classical mechanics in the

ability of quantum systems to exist in coherent superposition of states with

complex amplitudes. The other differences relate to the tensor product

description of multiparticle systems. Therefore complex vector space was

the best choice for the quantum mechanical state space [15] .

The basis is defined as set of vectors |x〉1, ..., |x〉k in the vector space V (in

Dirac bra-ket representation) and satisfies [26]:

a)|x〉1, ..., |x〉k are linearly independent.
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b)∀|x〉 ∈ V ∃ λi ∈ C

such that

|x〉 =
k∑
i=1

λi|x〉i (5)

1.4.1 Hermitian Operators

” Any physical quantity (observable, e.g. position X) is associated with an

orthonormal basis |xi〉 (the observables eigenbasis) whose elements (eigen-

states or eigenvectors) correspond to possible values (eigenvalues) of the

observable. So to measure the observable,it has to construct a measure-

ment apparatus associated with the observables eigenbasis . After the

measurement, the apparatus will display the value corresponding to the

basis element onto which the state has been projected. Every observable

and the apparatus, is associated with an operator, defined as [27],

X̂ =
∑
|xi〉〈xi|xi

X̂|xi〉 = xi|xi〉
(6)

Every physical observable is measurable and entirelly has real eigen values

which represent the measurement values of that observable, therefore if

the system is prepared in an eigenstate of an observable, measurement of

this observable will always (with probability one) yield the corresponding

eigenvalue. ”Associating operators with observables appears useful since

these operators carry full information about this observable and are also

useful in calculations. For example, they provide statistical information

about possible outcomes of measuring the observable [27]”.
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The operator Â is called Hermitian operator or self-adjoint if [15]

Â = Â† (7)

For Hermitian operator all eigenvalues of Â are real and the eigenvectors

corresponding to different eigenvalues are orthogonal [15].

The eigenvalues of a matrix are basis independent . Therefore it is suit-

able to represents a physical observable with the measurement outcomes

to identify the eigenvalues of the associated observable. In this case this

required that the operator has only real eigenvalues and this can be satis-

fied only with Hermitean operators [26].

On an N- dimensional Hilbert space, Hermitean operators are often rep-

resented by an N × N matrix which have N eigenvalues, denoted by λi

corresponding to the eigenvectors |λi〉. If the eigenvalues of the Hermitian

matrix are all different, then the corresponding eigenvectors are orthog-

onal. Therefore the eigenvectors form a set of N pairwise orthonormal

vectors in an N-dimensional Hilbert space. Therefore any Hermitean oper-

ator Â can be expanded in its eigenvectors and eigenvalues which is called

diagonalization as [15]

Â =
∑
i

λi|λi〉〈λi| (8)

To represent this matrix in other basis, it is important to find a map

between the original basis (i.g canonical basis |ei〉) and the orthogonal

basis of the eigenvectors of Â since thee matrix form of an operator Â is

basis dependent..
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1.4.2 Unitary operators

An operator matrix Û is called unitary if it is defined for all vectors |x〉, |y〉

in the Hilbert space H, such that [15]:

〈x|Û †Û |y〉 = 〈x|y〉. (9)

The above condition can be replaced by:

Û †Û = Û Û † = 1 (10)

Eq.(9) implies that a unitary operator preserves the scalar product and

therefore the norm of vectors.

Any unitary operator Û on an N-dimensional Hilbert space H has a com-

plete basis of eigenvectors and all the eigenvalues are of the form eiφ with

real φ i.e [15],

|λ2| = 1⇔ λ = eiφ (11)

To any unitary operator Û there is a Hermitean operator Â such that [26]

Û = ei
ˆ̂
A (12)

Any unitary operator Û associated with the Hermitean operator Â can be

represented by the eigenvalues ak and eigenvectors |ak〉 of Â such that [26]:

Û = eiÂ =
N∑
i=1

eiak|ak〉〈ak| (13)

This is an operator which has eigenvalues of the form eiak with real ak.

The above two relations are very useful in the Hamiltonian analysis and in

the computation of the eigenstates and eigenvalues . It can also be verified
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that for any unitary operator, the following relation is satisfied [28, 29]

f(Û †ÂÛ) = Û †f(Â)Û (14)

1.5 Quantization of Light

With low levels light , where the number of photons is small, the quantum

theory of light is very important. In this case the fluctuation around the

avarage field value 1/
√
N is not as small ( where N is the average number of

photons) as in the classical limit and hence the fields cannot be considered

to be continuous. Starting from Maxwells equations, the genralized coor-

dinates and their derivatives in the QM system must have a commutation

relation defined analogous to that of harmonic oscillator such as [30]

[x̂, p̂x] = xpx − pxx = i~ (15)

where x and px are the position and momentum operators respectively.

Here the quantized EM field is considered to be equivalent to a system of

infinite set of harmonic oscillators [32]. As a result of the field quantization,

the basic quanta of the EM fields, which are called photons, are created

and annihilated in discrete processes of emission and absorption by atoms

or matter in general [30].

The Hamiltonian of a single mode EM is [32]:

Ĥk =
~ω
2

(âkâ
†
k + â†kâk) =

~ω
2

(â†kâk +
1

2
) (16)

where â†k and âk are the creation and annihilation operators of the kth mode

respectively.

1.5.1 Number states

As in the harmonic oscillator, a photon number eigenstate |n〉 is defined
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as an eigenstate of a photon number operator n̂ with an eigenvalue n [33]

n̂|n〉 = n|n〉 (17)

The graund state ( vacuum state) |0〉 is defined by [33]

â|0〉 = 0 (18)

|0〉 is a number state of a smallest eigenvalue and â is a photon annihilation

operator represented by [33]:

â =
1√
2~ω

(ωq̂ + ip̂) (19)

and substituting in Eq.(18) the relations,

q̂ = x and p̂ = −i~ ∂
∂x

the following relation is obtained [30]:

〈x|â|0〉 =
1√
2~ω

(ωx+ ~
∂

∂x
)ψ0(x) = 0 (20)

where ψ0(x) = 〈x|0〉 is a Schrodinger wavefunction of a vacuum state in x

representation.

The solution of Eq.(20), results in [30]:

ψ0(x) = (
ω

π~
)
1
4
e[− 1

2 (ω~ )x2] (21)

Eq.(21) shows that the vacuum state is a Gaussian wavepacket centered at

x= 0 and with a variance of 1
2
~
ω .

The ground state energy of the radiation field is given by [33],

Hrad|0〉 =
1

2

∑
k

~ωk|0〉 (22)
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The sum diverges, since in the summation over the modes, correspond-

ing to unbounded frequencies is not bounded from Eq.22. An interesting

consequence of the quantization of the radiation field is the fluctuations as-

sociated with the zero - point energy or the so-called vacuum fluctuations

. These fluctuations have no classical analog and are responsible for many

interesting phenomena in quantum optics [32].

A number state with a higher eigenvalue may be obtained by [30]

|n〉 =
1√
n!

(â†)n|0〉 (23)

and corresponds to the wave function [30]

ψn(x) = 〈x| 1√
n!

(â†)n|0〉 (24)

The photon number eigenstates form a complete orthonormal set since

they are eigenstates of a Hermitian operator n̂ :(the eigen states of a Her-

mitian operator form a complete set) or[26]:

∑
n |n〉〈n| = 1

1.5.2 Coherent states

A coherent state |α〉 is defined as an eigenstate of a photon annihilation

operator â with a complex eigenvalue α,[34, 36]

â|α〉 = α|α〉 (25)

For α = 0, Eq.(18) will be obtained. Thus from Eqs.(25,18), the vacuum

state |0〉 is simultaneously a photon number eigenstate and a coherent

state. The coherent state |α〉 can be expanded in terms of photon number
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eigenstates as [37]:

|α〉 =
∑
n

|n〉〈n|α〉 (26)

|α〉 = e−
1
2 |α|

2∑
n

αn√
n!
|n〉 (27)

Gaussian wavepacket of a coherent state ψα(x) can be derived simillar to

that of Eq.(20) [30].

ψα(q) = ((
ω

π~
)
1
4e[− ω

2~ (q−〈q̂〉)2+ı 〈q̂〉~ ]q (28)

The coherent and vacuum states have identical variances 〈q̂2〉 = 1
2
~
ω .

The measurement statistics of a coherent state for a photon counting mea-

surement is given by [37]:

P(n) = (〈n||α〉)2 =
e−|α|

2

|α|2n

n!
, (29)

which is a Poisson distribution with an average photon number 〈n〉 = |α|2

[38]. A coherent state is a minimum uncertainty state where ∆p∆q = ~
2

and Coherent states form a complete set i.e 1
π

∫
|α〉〈α|d2α = 1 [37].

1.5.3 Thermal States

Thermal states are the third class of quantum states of light.They are

produced by thermal sources, like light bulbs. The photon statistics of a

thermal state is given b Boltzmann distribution:

p(n) = 1
1+n̄( n̄

1+n̄)n [30]
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1.6 Quantum Information

Quantum information, in general has been developed by the efforts of many

researchers, examples R. Landauer in the 1960s studied the thermodynamic

effects of irreversible operations in computation and showed that every

rirreversible operations was associated with loss of energy and by using

reversible operation, C. Bennet showed that the thermodynamical effects

can be reduced [40, 41]. Quantum measurements which are irreversible

operation were explained by J. von Neumann , C. Helstrom and A. Holevo

who investigated the bounds on the capacity of the quantum communica-

tion channels when they are used to transmit classical information [45-48].

In the early works, the efforts concentrated on the limitation of classical

information processing and to show the advantage of using quantum me-

chanical computing and its application in quantum cryptography which

was introduced by C. Bennett, et al [41].

Quantum computer was first introduced in the 1980s, by R. Feynman and

P. Benioff [46]. They showed that the complexities inherent in a classical

computer might be reduced by using a computer based on quantum me-

chanics. The quantum computing issue stayed in the theoretical researches

until 1994 when P. Shor published his algorithm for factoring large whole

numbers which was considered as a rea pay off for building more effective

quantum cryptographic protocols [24] .

1.6.1 Classical Bit (cbit) and Quantum Bit (qubit)

The basic unit of information of a classical discrete computer are bits, which

may be a two-valued classical entities, example, in TTL logic, the zero and

five voltage levels are used to represents bit of logic 0 and 1 respectively .

By analogy, quantum bit can be simulated by a two-level quantum system,
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or eigenstates labeled |0〉 and |1〉 . This representation corresponds to the

classical bit, 0 and 1 respectively. Qubits can be simulated by photons in

the polarization basis or in the number state basis , electrons and other

spin- 1/2 systems [39].

Single qubit systems are very important in quantum computing since all

other complex systems can be modeled with multiqubits in the Hillbert

space. Qubit is a two eigen state , and can be in a superposition state

α|0〉+ β|1〉 also that is, in addition to |0〉 and |1〉, with [39]:

α2 + β2 = 1 (30)

where α and β are complex numbers called the probability amplitudes of

the superposition.

The superposition princible of quantum states is one of the important

properties of quantum theory. In summary the classical bit is a two valued

amplitude encoding system while qubit is a continueous phase encoding

system [16]. Qubits can be represented by Bloch sphere Fig.2 where the

eigen states |0〉, |1〉 lies on the Z axis of unit sphere which related to Z-

measurement, while the states 1√
2
(|0〉 + |1〉) and 1√

2
(|0〉 − |1〉) lie on the

X axis called Hadamerd basis. The quantum state |ψ〉 has norm one and

angle θ, φ with Z and X axis respectively [19].

|ψ〉 = cos
θ

2
|0〉+ eiφsin

θ

2
|1〉 (31)

The quantum effect of the superposition principle will extend the number

of processing states [39].
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Figure 2: Bloch sphere representation of quantum bit. The eigen states |0〉, |1〉
lies on the Z axis of unit sphere which related to Z- measurement, while the
states 1√

2
(|0〉 + |1〉) and 1√

2
(|0〉 − |1〉) lie on the X axis. The state |ψ〉 has norm

one and angle θ, φ with Z and X axis respectively

1.7 Multiqubit systems

Multi-bits classical system state exists as strings of bits, while n qubits

system is described by the tensor product of n single qubit states. If

there is more than one qubit in the quantum system, product eigenstates

are used to express its state. The ability of a quantum system to live

in a coherent superposition of many eigenstates will create the quantum

interference between all eigen states which is very important in quantum

computation and facilitates the quantum computer to deal simultaneously

with all eigenstates which has no classical analogy. For example, a two-

qubit system has the basis states,|00〉,|01〉,|10〉,|11〉 [39]

The classical states constructed from two classical bits have the possibili-

ties to be in one of the four states (00,01,10 or 11) but two quantum bits

could be in a coherent superposition of all four states, while three qubits

could be in a superposition of eight states (|000〉, |001〉, |010〉, ...|111〉) .This
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is the main distinction between classical and quantum memory [39].

Although a qubit can exist in an a coherent superposition state, measur-

ing the quantum state will collaps it to one of its eigenstates, |0〉 or |1〉,

according to the measurement postulate of quantum mechanics i.e. the

measurement will force the quantum state to lose its quantum character

and changed it to just classical bits [15, 39].

The coherent superposition of exponential number of eigen states, requires

also an exponential number of classical processing units to process the in-

fomation encoed in the quantum states. The ability of quantum computer

to deal with an exponential number of eigen states coherently is called the

parallelism. It is uniquly a trait of quantum computer and is one of the

main distiction between the quantum computer and the classical counter-

parts [15].

The ability of quantum state to live in coherent superposition many eigen

states will subject it to quantum interference which is very important in

quantum computing and facilitates the quantum operation. This phenom-

ena has also no couterparts. Consequntly, the power of the quantum com-

puter is exponentially larger than their classical computer [15].

1.7.1 Quantum gates

In irreversible classical computing, irreversible Boolean fonction are used

whil reversible Boolean fonction are used in reversible classical comput-

ing. In quantum computing, unitary gates are used in computation [15].

Poincare (Bloch) Sphere representation provides a good idea about the pos-

sible transformations of a single qubit, since any transformation of points

on the Poincare sphere is equivalent to a spesific rotation of that points by

a particular angle around a particular axis [15]. Consequently any single

qubit transformation is equivallent to the pruduct of the product of of two
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rotations around the coordinate system axes. These rotations are Rx(θ),

Ry(θ), and Rz(θ) corresponding to the rotation with an angle θ around the

axis x,y and z respectively [1]. Quantum gates are formed by the time evo-

lution of the state of the quantum system described by the time dependent

Schrodinger equation [15] ,

i~
d

dt
ψ(r̂, t) = Ĥ(r̂, t)ψ(r̂, t) (32)

Two quantum bit gates are different from single qubit gates in that Two

quantum bit gates provide non linear interaction between the two input

qubits.The most common two qubits gates are the controlled Z (CZ) gate,

swapping gate and the commonest gate, the Controlled NOT (CNOT)

gate which is of our interest. They are given below in matrix form in the

computational basis as [15]:

CNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 (33)

CZ =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

 (34)
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SWAP =


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

 (35)

The aforementioned matrix representation of the operators are basis depen-

dent.Therefore, chosing the basis is very important for the implementation

of quantum gates. Computational basis (logical basis Bc) is often used to

represent a 2 qubit information [15].

Bc = |00〉, |01〉, |10〉, |11〉 (36)

An example of a unitary operator is quantum time evolution given in

Eq.(38), in which the Hamiltonian H describs the quantum system. The

time evolution unitary operator of the state of the quantum system is de-

scribed by the time dependent Schrodinger equation Eq.(32), where Ĥ is

the Homiltonian oprater which describes energies resulted from all interac-

tions between the fields and particles by which we can determine the state

of the system in space and time by just knowing the state of the system

in a certain time to and position r. Ĥ can discribe exactly the state of the

system ψ(r, t) at any time t, through Eq.32 by [26]:

ψ(r̂, t) = Û(t, t0)ψ(r̂, t0) (37)

where [15]

Û(t, t0) = e−ı
Ĥ
~ (t− t0) (38)

so the state |ψ(t)〉 evolves through Eq.(13) [26]:

ψ(t̂) =
∑

e−ıλjt|λj〉〈λj||ψ(0)〉 (39)
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where λi,|λi〉 are eigen values and eigen vectors of the Hermitian operator

Ĥ. The unitary operator Û maps the whole states in the Hilbert space

to the corresponding states in the same space, which is actually rotation

operation since eiĤt is only a phase operator , as long as H is Hermitian

and all eigenvalues are real and the eigenvectors form a complete set of

orthogonal vectors i.e [26].

|eiλj | = 1 (40)∑
|λj〉〈λj| = I (41)

Since Ĥ is a squar matrix operator, therefore, it can be diagonalized and

written as a sum of the form [51] :

Ĥ =
∑

λj|λj〉〈λj| (42)

And, since a unitary operator can be written as a function (an exponential)

of a Hermitan operator [26]

Û = f(Ĥ) = eiĤt (43)

So from the Silvestor theorem[26]

f(Ĥ) =
∑

f(λi)|λi〉〈λi| (44)

Since Ĥ is Hermitian operator, so eiĤ is also Hermitian operator and have

the same eigenvectors λi. Consequently, we can use a common basis for

both Ĥ and eiĤ as it was shown from Eq.(44).

The unitary transformation given in Eq.(38) illustrates that the time-

evolution operator can be achieved with different Hamiltonians, since the

unitary operator is only concerned with the input and output of the trans-
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formation and not depends on the intermediate state of the system. This

iterprets that why there are different approaches to simulate a quantum

computation in different physical systems, using photons,electrons, atoms,

and other quantum systems [47].

Since the unitary operator U has the property [15]:

U−1 = U † (45)

therefore the quantum computation is a physically reversible process, it

is also logically reversible process. For example, if a three-qubit function

mapped |100〉 to |011〉, the inverse would map |011〉 to |100〉

1.8 Universality of CNOT and 1-qubit gates

The universality is defined as capability of a certain gates to perform any

unitary transformation on a multiqubit register. Single-qubit rotational

operations and the CNOT two-qubit logic gates are cosidered to be suffi-

cient for suh tasks, i.e. which makes CNOT gates this great importance

[38]. In reversible classical computation, the three bitsToffoli (or Fredkin)

gate is universal logic gate where, any three qubit controlled U operation

(including the quantum Toffoli gate) can be decomposed into a sequence of

two qubit operations, which in turn can be implemented using the single

qubit rotations and CNOT gate . This interprets, why quntum CNOT

gates are universal gates [15].

The universality of CNOT gates was given in the works of Cybenko et al

[48] who gave a quantum circuit for any givens rotation that contains only

one-qubit unitary gates and the controlled-NOT gates. Also, the fact that

one-qubit gates together with the controlled-NOT gate are universal set

for quantum computing was proved by Barenco et al in 1995 [49, 50] and

[51].
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1.9 Coherent Photon Conversion Process

In 2011 Langford et al. proposed an effective deterministic process based

on Kerr-nonlinearity called Coherent Photon Conversion (CPC). The key

principle of this process is the use of a strong coherent state as a classical

field which pumps a third order nonlinearity and thus induces coherent

oscillation between different multi-excitation states [52].

The quantum treatment of these nonlinear processes can be simplified

using the concept of parametric approximation, which state that if one of

coupled mode fields is highly excited coherent state, it can be assumed, at

least for a certain period of time, to act like a classical field so the corre-

sponding operator in the Hamiltonian interaction formula can be replaced

by the value of the electric field. This assumption will simplify the solution

of the system since it will reduce the order of nonlinearity by one [53]. The

CPC process utilizes this approximation in a third order nonlinear inter-

action of four light fields to tune and increase the strength of coupling.

CPC is used here as many other nonlinear interaction(NL) processes to

create nonclassical states that are usually used in quantum information

processing [52].

In the four wave mixing FWM interaction, two modes are pumped by a

strong coherent state which is supplied by bright laser beam source [54, 55].

The trait of CPC is that, only one of the four interaction modes is fed with

strong coherent state to pump a third order nonlinear interaction in order

to create the signal and the idler fields. Therefore, it is treated classically

according to parametric approximation. The coupling strength of the non

linearity is thus tuned and controlled by the value of the pumped field [52].

CPC is a nonlinear optical process involving four fields interacted coher-

ently inside a nonlinear medium which effectively considered as four-wave
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mixing interaction FWM created by a third-order non-linearity χ3 [52].

The fully quantized Hamiltonian formulas composed of products of cre-

ation and annihilation operators are basic ingredients of quantum field

theory and quantum optics (see e.g. [53]). In what follows, we consider

the three mode Fock states |na, nb, nc〉 on three modes a, b and c, and use

the same Hamiltonian of order χ2, defined as in [52]:

H1 = γ1ab
†c† + γ∗1a

†bc. (46)

Here, a, a†, b, b†, c and c† denote the annihilation and creation operators on

the modes a, b and c, respectively, and γ1 is a scalar factor, with γ∗1 its com-

plex conjugate. By these definitions, H1 is classified as a Hamiltonian of

χ2-nonlinearity. In principle, these specifications are sufficient as primary

assumptions to describe the processes that implement our logical gate op-

erations. But with respect to their experimental realization, we should be

aware of the general difficulties to obtain sufficiently strong nonlinear χ2

terms in conventional optical media. To address this issue, we evoke the

method of four wave mixing as described in [52] as an example of CPC.

The above Hamiltonian H1 can be realized within the coherent four wave

mixing process corresponding to the Hamiltonian H0 of χ3 nonlinear order,

given by [52]

H0 = γ0ab
†c†d+ γ̄0a

†bcd†, (47)

and by reducing this order to χ2 via the classical field. Specifically, the

scalar factor γ1 results from the fourth photonic mode d which is “pumped”

with an intense photon beam and, therefore, functions as a classical scalar

factor [53]. An important property of the CPC mechanism is the possibility

to tune γ1 in H1 with this classical beam via its electric field E, and to link
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E with the coefficients γ0 and γ1 by [52]:

γ1 = Eκγ0, (48)

where κ is a proportionality constant which depends only on the specific

system features, such as the optical media and the geometric setup. The

distinction between H0 and H1 parallels the aforementioned separation of

the functional levels; while H0 takes care of the the transition from χ3 to

χ2 and tuning of the parameters, H1 operates on the states encoding the

quantum information [52].

It is seen from Eq.(46) that the non-linear aspects lie in the coupling

between the photonic number states. But, as in any quantum system,

the time evolution ÛtΨ of a state vector Ψ with Ut = exp( i
~tĤ1) is a

linear process, i.e. Ût is a linear operator on the state Hilbert space of the

system. This time evolution is used to realize computational operations

with deterministic performance [52].

1.10 Litrature survey

Many probabilistic and deterministic schemes have been proposed to imple-

ment photonic CNOT quantum gates. Among these schemes is the scheme

introduced by Knill et al [56] which uses only linear optics elements to im-

plement the so called linear optical quantum computing (LOQC). LOQC

schemes exploit the inherent nonlinearity of photo detection process and

the quantum interference phenomena to induce the nonlinearity that is re-

quired in the nondeterministic regime[58] The most important factor in the

LOQC scheme is the probability of success. To satisfy the Defincenzo crite-

ria [57] of scalable quantum computing, many schemes [59-63]. have been

proposed to increase this factor, yet it is not practical to use the (LOQC)
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scheme for scalable quantum computing since it consumes substantial an-

cillary photon resources for achieving a high efficiency. The addition of

ancilla appears clearly in the linear optical regime in the work of Knill

etal [56] where a large number of ancilli of indistinguishable photons are

introduced as a tensor product to the original computational basis based

information. This addition of ancilli photons will increase the degree of

freedom of the transition from one state to another and so increase the

probability of success of the gate to n
n+1 where n is the number of ancilli

photons [56].

This is the main obstacle to large-scale quantum information proccessing

(QIP) with linear optics. On the other hand one way quantum comput-

ing [64, 65] utilizes measurement process on the probabilistic preparation

of special entangled states to achieve the required non-linearity. Alter-

natively, a deterministic quantum computing scheme utilizes the intrin-

sic nonlinearity to realize multi-photon interactions. These deterministic

quantum computing schemes are classified according to the type of non-

linearity used. Zeno gates [69-72] , use two photon absorption process as

a continuous measurement to implement the nonlinearity required. Cross-

Kerr coupling nonlinearity schemes [70] were proposed to implement two

qubit CNOT gates, but until now there are no real materials existing which

provide the sufficient induced phase shift required for quantum computing.

Parity gates [71-74] are another type of nonlinear optical gate which use

weak non-linearity to induce multi photon nonlinear interaction inside a

Kerr media and to carry the quantum correlation from one photon to the

other. To execute such interaction X- quadrature measurement are used

to project the two photons states into either one of the parity subspaces

and this requires reliable peak separation for discrimination the parity.

Numerous non-linear photonic devices have been investigated in theory
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and experiment . In this thesis we introduce a deterministic method to

implement photonic quantum CNOT gates based on the CPC process.

1.11 Aim of the work

In this thesis, the goal is to build reliable mathematical models of a two

qubits CNOT gates by building quantum gates in different bases and then

investegating the possibility of implementing these models in reliazable

physical systems.

28



2 Ch.2: Novel CNOT Gate Mathematical

Schemes and Proposed Physical

Implementation



2.1 Introduction

In this chapter two novel schemes of CNOT gate are introduced based on

the bases and the type of Hamiltonian system used. Tools that are to

be used in designing the CNOT gate are illustrated. It is divided into two

different schemes will be presented: The first scheme includes mathematical

CNOT gate architcture based on suggested Hamiltonian and on proposed

three-qubits basis with an overview of the principles of the basis and the

effect of the chosen basis on the final architecture of the CNOT gate design.

The second scheme, includes mathematical CNOT gate scheme based on

a suggested Hamiltonian and on proposed five qubit basis.

2.2 Designing tools

The standard form of CNOT gate in the computation basis is given by

Eq.(33). In Dirac notation CNOT operator takes the following form in the

computational basis:

CNOT = |00〉〈00|+ |01〉〈01|+ |10〉〈11|+ |11〉〈10| (49)

Matrix representation of operators is basis dependent while the operator

representation is not. Sometimes, working in high dimensional space is

useful for the reduction of the circuit implementation complexities. Related

to the CNOT gate, the 2 qubits have to be nonlinearly interacted in the

computational basis forming a CNOT function as in Fig.(3).

The interaction is not fixed by a certain design of CNOT gate, and the

structure of the CNOT gate is governed by the basis used. Therefore, there

is a wide rang of CNOT simulations.

The aforementioned matrix representation of the operator given in Eq.33
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Figure 3: The nonlinear behavior of the CNOT function in the
computational basis.

is basis dependent.Therefore, chosing the basis is very important for the

implementation of quantum gates. Computational basis (logical basis Bc)

given by Eq.(36) is often used to encode a 2 qubit information .

In Bc, the maximum number of possible reversible operations of any

two qubit unitary function is four for the most common 2 qubit gates as

shown below. Accordingly the degree of freedom in transition from any

initial state to the final state is limited and fixed by one stage. To have

a high degree of freedom in the transitions from initial state to the final

state, more than four dimensional subspace is required by adding ancillary
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qubits to the computational basis Bc.

|00〉CNOTtr1−−−−−−→|00〉

|01〉CNOTtr2−−−−−−→|01〉

|10〉CNOTtr3−−−−−−→|11〉

|11〉CNOTtr4−−−−−−→|10〉

|00〉SWAPtr1−−−−−−−→|00〉

|01〉SWAPtr2−−−−−−−→|10〉

|10〉SWAPtr3−−−−−−−→|01〉

|11〉SWAPtr4−−−−−−−→|11〉

|00〉 CZtr1−−−−−−−→|00〉

|01〉 CZtr2−−−−−−−→|01〉

|10〉 CZtr3−−−−−−−→|10〉

|11〉 CZtr4−−−−−−−→− |11〉

(50)

2.2.1 Three and five qubit subspaces

Adding ancilla to the computational basis according to tensor product

postulate [15] will increase the flexibility of designing quantum gates to

perform a gate function. For example, adding one ancilla qubit to the

computational basis, will extend the dimension of the Hilbert space to

eight (B8) as suggested below:

B8 : |000〉, |001〉, |010〉, |011〉|100〉, |101〉, |110〉, |111〉 (51)

Among this space we choose the subspaces B3 such that:

B3 ≡ {|000〉, |001〉, |010〉, |011〉|100〉} (52)
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Also, adding three qubits to the computational basis will extend the di-

mension of the space to 32, and we sellect the subspace B5 such that:

B5 ≡ {|01010〉, |01001〉, |00110〉, |00101〉|10000〉} (53)

for the 5 qubit 5 dimensional subspace corresponding to B3.

The redundant states are helpful because they allow to have more tran-

sitions, which means more time unitary evolution gates can be added con-

trary to the four dimensioned Hilbert space where the two qubit operation

exhusts all the possible transitions necessary in one operation as shown

in Eq.50 . The flexibility of designing a 2 qubit gate is extended and the

redundant states can be used as an intermediate states to perform the final

gate. In our design we add a vacuum state |0〉 to map Bc in three qubit

state to extend the subspace and we suggest the possible transitions for

the three qubits subspace B3.

|000〉 op1−−−→|000〉 op2−−−→|000〉 op3−−−→|000〉

|000〉 op1−−−→|001〉 op2−−−→|001〉 op3−−−→|001〉

|010〉 op1−−−→|010〉 op2−−−→|100〉 op3−−−→|011〉

|011〉 op1−−−→|100〉 op2−−−→|010〉 op3−−−→|010〉

(54)

In the above process given by Eq.(54) we have 3 operations,(op1, op2, op3),

Eq.(54) maps the 3-qubits encoded computational basis |0〉|Bc〉 ≡ |000〉, |001〉

,|010〉, |011〉 in a CNOT operation. Realizing or implementing a Hamilto-

nian system operator in the working subspace {B3} does realize the corre-

sponding unitary gate in the computational basis.

2.2.2 Proposed Hamiltonian

The Hamiltonian Ĥ is a Hermitian operator corresponding to the total

energy E and in classical mechanics Ĥ does always associate 〈H〉 with
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the expectation value of the energy of the system. This Hamiltonian is

used to find the form of the time evolution of the state of the quantum

system which is described by the time dependent Schrodinger equation of

Eq.(32). Where Ĥ is the Homiltonian operater which describes energies

resulted from all interactions between the fields and particles by which one

can determine the state of the system in space and time by just knowing

the state of the system in a certain time to and position r. Ĥ can discribe

exactly the state of the system ψ(r, t) at any time t, through Eq.(38).

Here a system of Hamiltonian Ĥ was suggested such that

Ĥ|000〉 = 0

Ĥ|001〉 = 0

Ĥ|010〉 = 0

Ĥ|011〉 = γ|100〉

Ĥ|100〉 = γ?|011〉

(55)

where |100〉 is an intermediate state and never included in the input or

outgoing states.

By applying quantum mechanical postulates, we can predict the out going

state in this Hamiltonian interaction Eq.(55). The time evolution of quan-

tum states in the Hamiltonian system derived from Schrodinger equation

Eq.(32) is

|ψ(t)〉 = e−
i
~Ĥt|ψ(0)〉 (56)

Since the operator e−
i
~

ˆ̂
Ht satisfies the relation

|e−
i
~Ĥt| = I (57)

therefore e−
i
~Ĥt is unitary operator.
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From Eq.(55) the Hamiltonian matrices H000, H001 and H010 correspond-

ing to the one dimentional subspaces {|000〉} ,

{|001〉} and {|010〉} respectively are given as:

H000 = (0)

H001 = (0)

H010 = (0)

(58)

the eigen values of the above one by one matrices is calculated by the

characteristic equation

λ− 0 = 0 (59)

consequently the eigen values of the Eq.(58) are all zero. and so the time

evolution of the states |001〉, |010〉,|010〉 is

|ψ(t)〉 = |ψ(0)〉 (60)

Alternatively in the two dimensioal Hilbert space (|011〉, |100〉) the inter-

action Hamiltonian matrix is formed from Eq.(55) as:

H011 =

 0 γ

γ? 0

 (61)

The eigenvalues of the matrix H011 of Eqs.(61) can be obtained from the

characteristic equation:

λ2 − |γ|2 = 0 (62)

λ = ±|γ| (63)

Since H011 is Hirmetian matrix so the eigenvectors| ± λ〉 corresponding to

the eigen values λ = ±|γ| can be derived by substituting Eq.(61) in the
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eigenvalue equations given by [75]:

H011|+ λ〉 = +|γ||+ λ〉 (64)

H011| − λ〉 = −|γ|| − λ〉 (65)

and so the eigenvectors | ± λ〉 are:

|λ+〉 =

 1

γ∗

|γ|


|λ−〉 =

 1

− γ∗

|γ|

 (66)

2.2.3 Time evolution unitary operator

To determine the equivalent time evolution operator of the Hamiltonian

Ĥ suggested by Eq.(55). The Hamiltonian matrix has to be transformed

to its equivallent diagonal matrix form ĤD according to the equivallence

princible which states that two matrices are similar if they have the same

characteristic equation [75].

The diagonal form of an operator matrix is more easier to deal with function

of operator matrix than that with the original matrix since it can be directly

execute the function by applying the function on each diagonal element.

The matrix Ĥ of Eq.(61) is Hermitian and has the diagonal form [75]

D = S−1HS =

 d11 0

0 d22

 (67)
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where S is the modal matix whose columns are the eigenvectors ofĤ i.e

[75]

S = {|λ+〉, |λ−〉} =

 1

γ∗

|γ|

1

− γ∗

|γ|

 (68)

Therefore, from Eq.(67), the diagonal form of the matrix Ĥ is:

D =

 |γ| 0

0 −|γ|

 (69)

The time evolution unitary matrix f(H) can be determined by:

f(H) = S

 f(d11)) 0

0 f(d22)

S−1 (70)

Calculating f(H) = ei
H
~ t in the specified basis helps to find the time evo-

lution operator Û of Schrodinger’s equation Eq.(32). But since [75]

f(Ĥ) = Sf(D)S−1 = Sei
D
~ S−1 (71)

where f(D) is the function operation on the equivallence diagonal form D

given in Eq.(69) of the Hamiltonian matrix Ĥ in the specified subspace as:

f(D) =

 f(d11) 0

0 f(d22)

 (72)

from Eqs.(67,68,70, 72), the following equation will be found:

f(Ĥ) =

 1
2e
i |γ|~ t + 1

2e
−i |γ|~ t 1

2
γ∗

|γ|(e
i |γ|~ t − 1

2e
−i |γ|~ t)

1
2
γ∗

|γ|(e
i |γ|~ t − 1

2e
−i |γ|~ t) 1

2e
i |γ|~ t + 1

2e
−i |γ|~ t

 (73)
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The outgoing states of the unitary time evolution operator of Eq.(73,60)

of the suggested Hamiltonian given by Eq.(55) are as follows:

|000〉 Ût−−−−→|000〉

|001〉 Ût−−−−→|001〉

|010〉 Ût−−−−→|010〉

|011〉 Ût−−−−→ cos( |γ|~ t)|011〉+ i sin( |γ|~ t)|100〉

|100〉 Ût−−−−→ cos( |γ|~ t)|100〉+ i sin( |γ|~ t)|011〉

(74)

 

  

Figure 4: Timing evolution equation given by Eq.(74) starting from the input
state|100〉. It shows the resulting Rabi-like oscillations [55] for the probabilities
amplitude of the two basis states |100〉 and |011〉 as a function of the interac-

tion parameter Γt = |γ|
~ t.The coherent oscillation of the superposition state

composed of the state |100〉 associated with cosine curve and |011〉 associated
with sine curve is very clear and for a certain value the interaction parameter
Γt we can pick up the oscillation at the desired state.

Starting from the input state |100〉, Fig.(4) shows the resulting Rabi- like

oscillations [52] for the probability amplitudes of the two eigenstates , |100〉

with bold (cosine) curve and |011〉 with light (sine) curve as a function of

the interaction parameter |γ|~ t. i.e every eigenstate in the subspace {|100〉,

|011〉} evolved to a coherent superposition state. For a certain time t that
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makes the interaction parameter equal π , the evolution matrix takes the

matrix form given in Eq.(34) and performs the controlled Z operator in

the Fock basis (number state basis), which is exactly the result reached by

Langford et al [52].

Since the number state basis is used here, therefore, using controlled

Z operator to develop another two-qubit quantum gate, such as CNOT

gate, requires designing all other single qubit gates in the number state

basis which is another obstacles in the 2 qubit gate designing plans. Also,

to avoid the walk-off condition one needs to deal with shorter length of

nonlinear material [54]. Instead, we follow another approaches in order to

construct CNOT gate from the elementary process. The four-extra states

in the 3 qubit, 8 dimensional Hillbert space may be used to extend the

horizon of CNOT gate implementation such that imagined by Eq.(54).

The time evolution equation given in Eq.(74) in the 3 qubits basis

B8 can be acheived in the 5 qubit subspace B5 given in the next sec-

tion by suggesting the same Hamiltonian matrices elements, H000 in the

subspace {|01010〉}, H001 in the subspace {|01001〉} and H010 in the sub-

space {|00110〉} and that given in Eq.(61) for the subspace denoted by

{|00101〉, |10000〉}.

2.3 Three qubit basis CNOT gate architecture

Here we use some of these extra states ,e.g., |100〉 to construct other quan-

tum reversible gates (U1, U2, ...Un) working in the subspace B3 aimed to

realize CNOT gate from the combination of these gates such that:

CNOT = Û1Û2.....Ûn (75)
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In plain, we control the interaction between the qubits for a certain and

countable time interval t for many processes and then match all these

processes to perform a CNOT gate.

Now, let the evolution time for Û1 in Eq.(74) equal t such that the time

interaction parameter in Fig.(4) equal π
2 , then:

|abc〉

|000〉 Ûπ
2−−−−−→
|000〉

|001〉 Ûπ
2−−−−−→
|001〉

|010〉 Ûπ
2−−−−−→
|010〉

|011〉 Ûπ
2−−−−−→

γ
|γ||100〉

(76)

exchanging the qubits a and b the outgoing of Eq.76 results in

|000〉 Uswap−−−−−−−→
|000〉

|001〉 Uswap−−−−−−−→
|001〉

|010〉 Uswap−−−−−−−→
|100〉

γ
|γ||100〉 Uswap−−−−−−−→

γ
|γ||010〉

(77)

To return to the computational basis another Uπ/2 section is required such

that

|000〉 Uπ
2−−−−−→
|000〉

|001〉 Uπ
2−−−−−→
|001〉

|100〉 Uπ
2−−−−−→

γ∗

|γ||011〉
γ
|γ||010〉 Uπ

2−−−−−→
γ
|γ||010〉

(78)
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The over all transition matrix constructed from transitons of Eqs.(76-78)

can be written in the computational basis as:

UT =


1 0 0 0

0 1 0 0

0 0 0 γ∗

|γ|

0 0 γ
|γ| 0

 (79)

Eq.(79) is similar to the standard CNOT gate given by Eq.(33) if we let

the entry γ to be real unity and then correct the phase factor i by applying

a single phase gate of π
2 phase shift to the qubit b given by:

φπ/2 =

 1 0

0 ei
π
2

 (80)

The standard CNOT matrix in the basis B3 is simulated by the sequential

operations of Eqs.(76),(77), and (78) which can be abbreviated by (USU).

2.4 Five qubit basis CNOT gate architecture

As seen before, the dimension of basis will affect the method of designing

quantum gates by extending the choices of designing intermediate gates.

This facility can be utilized to design another architecture of a CNOT

gate in different basis. Here, we suggest a five dimensional subspace B5

including the states:

B5 ≡ {|01010〉, |01001〉, |00110〉, |00101〉, |10000〉} (81)

We also propose the type of the Hamitonian interaction in the subspace

B5 to be
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H|01010〉 = 0

H|01001〉 = 0

H|00110〉 = 0

H|00101〉 = iα|10000〉

H|10000〉 = iα?|00101〉

(82)

where α is a complex number interaction coefficient. The time evolution

matrix for this Hamiltonian interaction given by Eq.(82) in the sub spaces

˙{|01010〉}, ˙{|01001〉}, ˙{|00110〉} is 1× 1 identity matrices , while the time

evolution matrix for the subspace ˙{|00101〉, |10000〉} is identical to that of

Eq.(74).

To see the time evolution unitary operator of the states |abcde〉 of B5 under

interaction parameter π/2 (where a, b, c, d, and e are the qubits of the 5

qubits state), the interaction will transform the states in the subspace B51

to B52 as :

B51

a b c d e

0 0 1 0 1

0 0 1 1 0

0 1 0 0 1

0 1 0 1 0

Uπ
2−−−−→

B52

i α|α| 0 0 0 0

0 0 1 1 0

0 1 0 0 1

0 1 0 1 0

(83)

To allow the evolution of other states e.g; |00110〉, swapping in qubits d and

e is convenient for interaction. The over all transitions from the subspace
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B52 to the subspace B53 is governd by as:

B52

a b c d e

i α|α| 0 0 0 0

0 0 1 1 0

0 1 0 0 1

0 1 0 1 0

5swap1−−−−→

B53

i α|α| 0 0 0 0

0 0 1 0 1

0 1 0 1 0

0 1 0 0 1

(84)

Now, we can suggest another evolution operation in the subspace B53 with

π/2 interaction parameter which transits the states to the subspace B54 as:

B53

a b c d e

i α|α| 0 0 0 0

0 0 1 0 1

0 1 0 1 0

0 1 0 0 1

Uπ
2−−−−→

B54

0 0 −1 0 1

iα
∗

|α| 0 0 0 0

0 1 0 1 0

0 1 0 0 1

(85)

To return to the original basis B51 we have to do successive swapping and

evolution operation of the form:

B54

a b c d e

0 0 −1 0 1

iα
∗

|α| 0 0 0 0

0 1 0 1 0

0 1 0 0 1

5swap3−−−−→

B55

0 0 −1 0 1

iα
∗

|α| 0 0 0 0

0 1 0 0 1

0 1 0 1 0

(86)
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and

B55

a b c d e

0 0 −1 0 1

iα? 0 0 0 0

0 1 0 0 1

0 1 0 1 0

Uπ
2−→

B56

0 0 −1 1 0

0 0 −1 0 1

0 1 0 0 1

0 1 0 1 0

(87)

The over all sequential operations of Eqs.(83),84,(85),(86),and (87), ab-

breviated by USUSU perform a standard CNOT gate after a phase cor-

rection with a π single qubit phase gate on qubit c.

2.5 Proposed physical realization with coherent pho-

ton conversion (CPC)

In this section, we implement the mathematical entities used in designing

the CNOT gate that was derived in this chapter into physical entities.

The next subsection is allocated to implement the suggested basis B3 and

B5 and the proposed Hamiltonians given in Eqs.(55, 82). In the third

subsection we talk about the state of the art tools in Quantum Information

processing, the coherent photon conversion (CPC).

2.5.1 Basis representation

Here, we associate the three qubits basis B3 selected previously in this

chapter with the energy-time coordinate basis; of the the 3-mode number

state basis BF ∈ |n1n2n3〉 where ni here is the number of photons. Restri-

clly speeking we choose a bounded 3-mode Fock basis of three eigenstates
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such that ni ∈ {0, 1} [37] to encode the basis given in Eq.(52). The energy

of number state |n〉 is:

En = ~ω(n+
1

2
) (88)

For n = 0, the number state is called vacuum state with energy

Eo = 1
2~ω.

The degree of freedom in this case is unbounded, so the dimension of

the space is also unbounded . Since the evolution of the system is done by

unitary operator, it dictates that we have to deal with bounded subspace

for example with number states |n〉 for n ≤ 1. In this case we use the

two dimensional number state basis |0〉 and |1〉 to encode the logical state

|0〉, |1〉 respectively, i.e. in the implementation of the 3 qubits basis, every

logical qubit is implemented from the two dimensional Fock basis {|0〉, |1〉}.

Alternatively, we associate the five qubits basis, B5, with the space mo-

mentum coordinate basis. This is performed in terms of polarization co-

ordinates since in photonic quantum information the qubits are commonly

represented by photons. The logical basis used (|0〉, |1〉) for a two level

system is encoded in the direction of the momentum of photons.Therefore,

the vertical polarizition state |V 〉 and horizontal polarization state |H〉 are

considered to correspond to the logical basis |1〉 and |0〉, respectively.

2.5.2 System Hamiltonian

To implement the Hamiltonian suggested in Eq.(55) and Eq.(82), we evoke

the coherent photon conversion process introduced by Langford et al [52]

to implement the Hermitian operator of Eq.(55) in the extended compu-

tational basis B8 and finally to implement the CNOT gate in both the
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Fock basis and polarization basis. The distinction between H0 and H1 of

Eq.(47,46) parallels the aforementioned separation of the functional levels;

while H0 takes care of the the transition from χ3 to χ2 and tuning of the

parameters, H1 operates on the states encoding the quantum information.

Eq.(46) confimed that the non-linear aspects of the CPC lie in the cou-

pling between the photonic number states. But, as in any quantum sys-

tem, the time evolution ÛtΨ of a state vector Ψ with Ut = exp( i
~tĤ1) is

a linear process, i.e. Ût is a linear operator on the state Hilbert space

of the system which interprets, why this time evolution is used to real-

ize computational operations with deterministic performance. Our CNOT

gates operate within the 5-dimensional subspace B3 of Eq.(52) spanned

by the number state basis B = {Ψj}4
j=0, with Ψj = |β2 β1 β0〉, where

{β2 β1 β0} ∈ 0, 1 in binary notation. Note that H1 in Eq.(46) can be

constructed in the matrix form within the basis B. This matrix is semillar

to the suggested Hamiltonian of Eq.(55) which annihilates the state vec-

tors |Ψj〉 for j = 0, 1, 2 and it exchanges the state vectors Ψ3 = |0 1 1〉

and Ψ4 = |1 0 0〉 up to the phase factors γ or γ∗, respectively. By the

general principles of quantum mechanics, it follows that the corresponding

time evolution Ût,1 = exp( i
~tĤ1) acts as a coherent Rabi oscillationgiven

in Fig.4 between |0 1 1〉 and |1 0 0〉 within the 2D subspace they span. In

summary, we can derive a unitary time evolution operator semillar to that

of Eq.(73,74),

Ut,1|Ψj〉 = |Ψj〉, (j = 0, 1, 2), (89)

Ut,1(|0 1 1〉) = cos
(|γ1|

~
t
)
|0 1 1〉+ i

γ1

|γ1|
sin
( |γ1|

~
t
)
|1 0 0〉, (j = 3) (90)

Ut,1(|1 0 0〉) = cos
(|γ1|

~
t
)
|1 0 0〉+ i

γ∗1
|γ1|

sin
( |γ1|

~
t
)
|0 1 1〉, (j = 4). (91)
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2.6 Archetecturing of the three qubit based CNOT

gate with CPC
Here, we implement the 3 qubits based scheme mentioned in this chapter

with the CPC process and by encoding the three qubits basis with the

number state basis BF If the selected coordinate of the photonic system

is time- energy coordinate, the number (Fock) states |n〉 are used as the

basis for n ≥ 0.

In general, a quantum CNOT gate maps the computational basis BC =

{|C T 〉}C,T=0,1 to itself, with C denoting the control qubit, and T the target

qubit of a bipartite (two photon) system. The matrix MC of the lossless

CNOT gate with respect to BC, and with possible nontrivial phase factors

is such that

C T C T

|0 0〉

|0 1〉

|1 0〉

|1 1〉


MC

−→



eiφ11|0 0〉

eiφ22|0 1〉

eiφ43|1 1〉

eiφ34|1 0〉

, MC =


eiφ11 0 0 0

0 eiφ22 0 0

0 0 0 eiφ34

0 0 eiφ43 0

 . (92)

The exponentials eiφij in Eq.(92) are arbitrary phase factor of the matrix

elements (MC)ij which satisfy φ34 = −φ43. This structure provides the

unitarity of the linear map MC, which therefore represents an ideal, lossless

gate on the Hilbert space of the bipartite quantum system.

We note that in a quantum computational devices, a phase shift in any

of the output states does not affect the probability of measurement of the

state. Therefore, each of the entries of MC may be multiplied by a phase

factor eϕkj without changing the reading process of the output. The lossless

unitary matrix given in Eq.(92) can be obtained by a certain arrangements

of CPC components with the CPC behaviour given in Eqs.(89-91) in the
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subspace BC which can be used to implement the sequential operations of

Eqs.(76),(77), and (78) to implememt the function of the standard CNOT

gates of Eq.(33) in the number state and polarization bases as will be

illustrated in the next chapter.
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3 Ch.3: Implementation of quantum

CNOT gates with CPC



3.1 Introduction

In this chapter, we have two CNOT gate implementation schemes. First

the 3-qubits basis based CNOT gate scheme in a physical model will be

constructed. Next, a 5-qubit basis based CNOT gate derived in chapter

two is imlemented in the polarization basis physical model.

3.2 Number state based CNOT gate architecture

Here, three mode number state is used to encode a three qubit information.

Our CNOT gate design given in Fig.(6) also uses an ancillary state A in

addition to the control C and target T state, to encode the computational

states |A C T 〉 as the previously defined photonic number states |Ψj〉 =

|β2 β1 β0〉, such that mode a in CPC Uπ
2

carries the ancilla A, which at the

input stage remains in the vacuum state |0〉a, mode b carries the control

qubit C and mode c the target qubit T . In particular, for a fixed time t

of evolution, such that the interaction parameter Γt = π
2 , the transition of

the input states is evolved according to Eq.(89) and Eqs.(63,83,84,85) as:

a b c a b c

|0 0 0〉

|0 0 1〉

|0 1 0〉

|0 1 1〉


Uπ

2

−→



|0 0 0〉

|0 0 1〉

|0 1 0〉
iγ
|γ||1 0 0〉

.
(93)

This unitary operation is the first of two CPC sections used to implement

our USU CNOT gate given in Eqs.(89-91). The complete CNOT scheme is

realized by two additional operations. First, we simply swap the modes a

and b, and we denote this operation by Sab. Finally, we apply the operation
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Uπ
2

once more. Labeling the states by A, C and T for ancillary, control

an the target qubit fed to modes a, b and c, this amounts to the following

process

j A CT A CT

0

1

2

3

|0 0 0〉

|0 0 1〉

|0 1 0〉

|0 1 1〉


Uπ

2

−→



|0 0 0〉

|0 0 1〉

|0 1 0〉
iγ
|γ||1 0 0〉


Sab

−→



|0 0 0〉

|0 0 1〉

|1 0 0〉
iγ
|γ||0 1 0〉


Uπ

2

−→



|0 0 0〉

|0 0 1〉
iγ?

|γ| |0 1 1〉
iγ
|γ||0 1 0〉

.

(94)

Obviously, the entire operation Uπ
2
SabUπ

2
performs the CNOT operation

on the controll and target qubits |C〉 and |T 〉 as required, appart from the

phase factors iγ
|γ| and iγ?

|γ| aquired by the pure output states |T C〉 equal to

|0 1〉 and |1 1〉. If required, these phase factors can be compensated for

via the tunability of γ. In particular, choosing the classical electric field

component E to be Er

γor
= − Ei

γoi
, where Er, γor, Ei, γoi are the real and

imaginary parts of E and γo Eq.48 gives γ = 1. The remaining factor

i in Eq.(94) can be removed by applying a single qubit phase shift of π
2 on

the control mode C.

The swapping procedure can be done by hard swapping and may be done

with linear optics. There are several ways of dealing with this compatibility

issue. The CPC mechanism is sufficiently flexible to allow for variation of

the input and output frequencies (colors) of the modes. Moreover, linear

swapping mechanism can be applied on pairs of photonic qubits.

It is also possible to avoid swapping between different modes altogether

by using two different forms of the Hamiltonian for the time evolution

operators. We note that the combination Uπ
2
Sa,c (after the first application

of Uπ
2
) by Eq.(94) is equivalent to using the time evolution according to
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the Hamiltonian

Ĥ2 = γâ†b̂ĉ† + γ̄âb̂†ĉ, (95)

and subsequent relabeling of the output modes as CAT . Indexing the 
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Figure 5: Deterministic USU CNOT gate scheme in the Fock state basis

B. This scheme mainly consists of 2 elements of CPC (Û1,π
2
) and (Û2,π

2
). The

swapping operation between modes a and b is performed by self operatio of
(U1,π

2
) and (U2,π

2
) and hence there is no need to hard swapping. The black circles

represents the single photons of the number states input to CPC (Uπ
2
)at modes

a , b and c. The block, π
2
, represents single quantum bit phase gate of π/2 phase

shift. The three qubits in the I/p state are , the vacuum state |0〉 at mode a,
the control qubit C at mode c and the target qubit T at mode b

unitary operators as in Fig.(5), we have Ûn,π2 = exp(π2 iĤn), (n = 1, 2), and

in analogy with (94) we obtain the process

j A CT C AT

0

1

2

3

|0 0 0〉

|0 0 1〉

|0 1 0〉

|0 1 1〉


U1,π2

−→



|0 0 0〉

|0 0 1〉

|0 1 0〉
iγ
|γ||1 0 0〉


U2,π2

−→



|0 0 0〉

|0 0 1〉
iγ?

|γ| |1 0 1〉
iγ
|γ||1 0 0〉

.
(96)

Here, there is no intermittent change between modes in the internal input
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and output states.

The fact that the CNOT operation MC = U2,π2
U1,π2

can be realized as

a product of two unitary operators with exponentials of Ĥ1 and Ĥ2 re-

spectively, raises the question whether MC is itself the exponential of a

(possibly simple) Hamiltonian. The Baker-Campbell-Hausdorff formula

[28] provides a Hermitiean operator H12 such that

Û2,π2
Û1,π2

= exp
(π

2
iĤ2

)
exp

(π
2
iĤ1

)
= exp(iĤ12). (97)

In general, H12 is an infinite series in the commutators expressions of any

order of H1 and H2. The series may become simple in case the commutators

are zero from some low order onwards. But straightforward calculations

reveal that in the present case, these commutator polynomials of Ĥ1 and

Ĥ2 are nonzero, and even map elements of B to states that are orthogonal

to B.
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Figure 6: Deterministic USU CNOT gate scheme in the Fock state basis
B. This scheme mainly consist of 2 elements of CPC (Uπ

2
) and swapping

element SWAP. The swapping operation between modes a and b is performed
by hard swapping or by the system of beam splitter (BS) and phase shifting
(PS) elements. The black circles represents the single photons of the number
states input to CPC (Uπ

2
)at modes a , b and c. The block, π

2
, represents single

quantum bit phase gate of π/2 phase shift. The three qubits in the I/p state
are , the vacuum state |0〉 at mode a, the control qubit C at mode c and the
target qubit T at mode b
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3.3 Polarization based CNOT gate architecture

The idea of our second CNOT gate construction is to encode the qubits as

two photon polarization states and to process them with the CPC mech-

anism. The proposed scheme employs three CPC sections of the same

type as previously, i.e. with three photonic modes of which one is ancil-

lary, the other two carry specific polarization states of the qubits. Writing

H for “horizontal” and V for “vertical” polarization, we obtain the basis

Bp = {|H H〉, |H V 〉, |V H〉, |V V 〉}, i.e. Bp = (|p1, p2〉)p1,p2=H,V . Each

polarization state |pn〉 is mapped to a bimodal state by |H〉 7→ |1 0〉,

|V 〉 7→ |0 1〉, as shown by the transformation section in Fig.7

Figure 7: Transformation from dual rail to polarization encoding and vice
versa.The large blocks represent the totally polarized beam splitters PBS and
the small blocks represent the polarizers POL. The superposition polarized
state α|H〉 + β|V 〉 is transformed to the two routs state α|10〉 + β|01〉 and vice
versa.

(for n = 1, 2), whereby the first (p1) and second (p2) components encodes

the target and control state respectively, with the corresponding bimodal

states being denoted |T1, T2〉 and |C1, C2〉, respectively. This extends to the

product states in the obvious way, |p1 p2〉 7→ |T1 T2 C2 C2〉, and the result-

ing states form the dual rail basis Bd = {|1 0 1 0〉, |1 0 0 1〉, |0 1 1 0〉, |0 1 0 1〉},

which spans a 4D subspace within the Fock space of the four modes T1,

T2, C1, and C2. In practice, this transition from Bp to Bd is achieved by
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passing the states p1 and p2 through the left section of the transformer of

Fig.(7)

The complete dual rail CNOT gate is given the circuit diagram of Fig.(

8). After splitting the input beams into their polrarizations, and setting

the ancilla A to the vacuum state, the CPC mechanism is applied.

Figure 8: The deterministic dual rail USUSU CNOT gate. The backbone of
this gate involves mainly three sections of CPC (Uπ

2
), two swapping elements

S and single qubit phase correcter π The polarization basis input state (CT) is
passed through a polarization to dual rail transformer given in Fig.7 to C1C2
T1T2 and distributed as single photons on the dual rail modes denoted by a
black circles. The vacuum state |0〉 is an ancilla qubit. The dual rail output
can be transformed back into polarization states via dual rail to polarization
transformer given in Fig.7. Note that swapping operation is excuted between
the two qubits T1T2 of the dual rail basis target qubit T. The five qubits
|0〉C1C2T1T2 interaction through the components Uπ

2
, S, Uπ

2
, S, Uπ

2
performs

exactly a CNOT function.

The qubits T1 and C1 are fed into the modes b and c, respectively, to

perform the unitary transform Uπ
2

as defined previously in Eq.(97), and the

output at c is then swapped with qubit C2 (swaping operation S). This

procedure is performed twice, as indicated in Fig.(8). Eventually, Uπ
2

is

applied a third time. The output is precisely dual rail encoded states of

the CNOT operation of the input polariztion states, except for a minus sign

(phase shift π) of target output. Thus, correcting for the phase shift and

decoding the dual rail states back into polarization states (by the circuit
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in Fig.(7)) results in the final CNOT output in the polarization states.

Formally, the process in the dual rail system is
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CT a b c a b c a b c

(00)

(01)

(10)

(11)

|H H〉
|H V 〉
|V H〉
|V V 〉





(pd)

−→





|0 (0 1) (0 1)〉
|0 (0 1) (1 0)〉
|0 (1 0) (0 1)〉
|0 (1 0) (1 0)〉





Uπ
2

−→





|0 (0 1) (0 1)〉
|0 (0 1) (1 0)〉
|0 (1 0) (0 1)〉

i γ̃|γ̃| |1 (0 0) (0 0)〉





S

−→





|0 (0 1) (1 0)〉
|0 (0 1) (0 1)〉
|0 (1 0) (1 0)〉

i γ̃|γ̃| |1 (0 0) (0 0)〉





...

a b c a b c a b c CT

Uπ
2

−→





|0 (0 1) (1 0)〉
|0 (0 1) (0 1)〉

i γ̃|γ̃| |1 (0 0) (0 0)〉
−|0 (1 0) (1 0)〉





S

−→





|0 (0 1) (0 1)〉
|0 (0 1) (1 0)〉

i γ̃|γ̃| |1 (0 0) (0 0)〉
−|0 (1 0) (0 1)〉





Uπ
2

−→





|0 (0 1) (0 1)〉
|0 (0 1) (1 0)〉
−|0 (1 0) (0 1)〉
−|0 (1 0) (1 0)〉





(dp)

−→





|H H〉
|H V 〉
−|V V 〉
−|V H〉

(00)

(01)

(11)

(10)

(1)

.

--Fully quantum Hamiltonian formula of the

4 wave mixing

2120

. (98)

As can be seen from this description, the scalar factor γ in Eq.(98) is

automatically compensated. Therefore, fine tuning and normalization of γ

are not necessary in this case. The remaining minus signs in the output

(with the control qubit equal 1) may be removed by performing a phase

shift of π by a single phase gate on mode b either at the input or output

point, as indicate in Fig. (8) by the element π.

3.4 Conclusion

We have provided designs of a deterministic quantum CNOT gate which

acts as unitary operators on the state spaces of photonic number states as

well as polarization states. The deterministic performance is achieved by

using the χ2 nonlinearities which give rise to the Hamiltonian H1. This

Hamiltonian can be realized using the method of coherent photon conver-

sion, as presented in [52]. In particular, the crucial parameters determining
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the unitary operations can be tuned via the classical electric field used on

one mode of CPC system. In the number state design, there are two CPC

process and to perform the standard CNOT matrix given in Eq.(33), the

phase factors γ
|γ| and γ∗

|γ| for the two process have to be made unity. This

is tuned by the classical pump field. Alternatively the polarization based

CNOT design shows different behaviour scince the aforementioned phase

factors disappeared through the process, so the adjustment of the pump

field is not required. Since the CNOT gate represents a universal element of

logical circuits, their explicit construction can be seen as a proof of concept

for the feasibility in principle of general quantum computing devices.

3.5 Future Works

Our future work is to practicaly realize the two CNOT gates in both, po-

larization and number state bases as well as we hope to serve CPC process

in other quatum information processing like, entagled photon generation

and in photon detection enhancement.
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 الخلاصة                                             

 
من هي  للحاسوب الكمي و ت الاساسية اللبنا منCNOT , نوع الكمية من بواباتالتعتبر

النماذج الحالية لتمثيل عمليات غير ان  الفوتونية,الرقمية الكمية  المصادر الممتازة لربط الوحدات

CNOT كمية يمكن مضاعفتها. فوتونيةابية لتحقيق متطلبات عمليات حس  ءةغير كفو 

ا وذلك باختبار منهمق وتم التحق  CNOT مؤثرل نرياضي نتقديم نموذجيو  مرة ولاولقد تم هنا 

ن لدوائر ضوئية لتمثيل بوابات ضوئية كما نقدم في هذا البحث تصميمي .دقيق للقواعد المنطقية

ملية التحويل الضوئي المتشاكه لعمبنية على الالية الضوئية الكمية  CNOT من نوعحتمية 

(Coherent photon conversion,CPCوالتي لم تستعمل سابقا ) لبناء بوابات الا 

Controlled Z من نوعين تمتماثل مركبتينمن التصميم الاو   لفيتأ  . فقط CPC  تعمل بشكل

الكمية  الرقمية دةالوحموزعة على  الكمية  الرقمية ثلاثية الوحدات  المركبة الكمية عام بالحالة

 ووحدة السيطرة   target qubitالكمية  الرقمية ووحدة الهدفancilla qubit المساعدة  

وهذا المشروع قليل التعقيد من حيث )الدوائر الضوئية( ويمكن .  control qubitالكميةالرقمية 

  Number state basis (|0›,|1›)) العددية الكمية ) ت الاساسيةالحالاقواعد  منبناؤه واقعيا 

والتصميم الثاني  . الخطية البصريةمع بعض العناصر  CPC متماثلين من نوع ومن مقطعين 

ومكون من أيضا  قليل التعقيدو هو   ,(dual rail basis) المزدوج المسار حالات هو نموذج 

مستقطبة ال الكمية تالحالا  من ويمكن بناؤه واقعيا  ( (CPC من نوع  متماثلة مركباتثلاثة 

(H,V)polarization basis  مع بعض العناصر البصرية الخطية . 

يعتبر عامل قدح سريع للبوابة من   الضخ  في المتشاكهه .كما ان استخدام الحالة الكمية الضوئية  

  .شأنه تقليل زمن المعالجة نسبة الى زمن اللاتشاكه




